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Growth models and the question of universality classes

W. E. Hagston and H. Ketterl*
Department of Applied Physics, University of Hull, Hull, HU6 7RX, United Kingdom

~Received 23 June 1998!

In the past many papers have appeared which simulated surface growth with different growth models. The
results showed that, if models differed only slightly in their ‘‘growth’’ rules, the resulting surfaces may belong
to different universality classes, i.e., they are described by different differential equations. In the present paper
we describe a mapping of ‘‘growth rules’’ to differential operators and give plausibility arguments for this
mapping. We illustrate the validity of our theory by applying it to published results.@S1063-651X~99!05603-2#

PACS number~s!: 68.35.Ct, 68.35.Dv, 68.55.2a
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I. INTRODUCTION

During the past few years the kinetic roughening of s
faces has become a field of increasing interest. In particu
many papers have appeared concerned with computer s
lations of surface growth~see, e.g., Ref.@1#!.

In general, the surface is characterized by a heighth ap-
propriate to ad dimensional substrate of sizeL. The width of
the surfacew(t,L) at a time t is characterized byw(t,L)

5A(h)22(h)2 where the bar denotes an average. If the
sulting surface is self-affine it can be represented by a
namical scaling law,

w~ t,L !;La f S t

LzD , ~1!

where the functionf (x)→ constant forx→` and f (x)
;xb, with b5a/z asx→0. The unit of time corresponds t
depositingL particles. For models which do not contain v
cancies or overhangs, so-called solid on solid models~SOS!,
this means that the average heighth̄ and the timet are iden-
tical. The exponentsa, b, andz determine which universal
ity class the given model belongs to. In the present paper
wish to examine the implications of some of the stand
assumptions in the theory, and in particular to provide
mapping of prescribed rules of growth to the correspond
differential operators appearing in the associated stocha
growth equations.

II. THEORY AND DISCUSSION

A. Simple growth systems

The dynamical evolution of a surface prior to any mov
ment of the deposited particles is presumed to be descr
by the equation

]h~x,t !

]t
5F1h~x,t !, ~2!
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whereh is a noise term with zero mean~i.e.,h50) andF is
the flux rate of incident particles. For the particular ca
usually considered in the literature, thatF is a constant we

obtain h̄5Ft. The last result is only true if there are n
vacancies in the system. A similar result~but with F replaced
by a larger entity,F8 say! would also hold, if the vacancy
concentration stays constant over time, i.e., in this case

would again haveh̄5F8t. However, for such a situation th
starting equation would not be equal to Eq.~2!, andF8ÞF,
the incident flux. In general, the form of the starting equat
for situations where vacancies and overhangs occur is
from obvious and is a problem we will return to later. Befo
we can answer such questions it is pertinent to address
simpler problem. Namely, what type of deposition proces
Eq. ~2! applicable to anyway? One class of such processe
the so called SOS models in which particles are depos
randomly at lattice sites, i.e., a number is chosen at rand
and the number of particles at the site characterized by
number is increased by one. This is usually referred to
~pure! random deposition~RD! and corresponds to a consta
flux F with a random noise termh. ~We refer to it as pure
since the deposited atoms are not permitted to move.! It is
well known that the interface width for~pure! RD increases
indefinitely with time, i.e., the associated surface is not s
affine with the consequence that the width itself does
saturate@1#.

A variant of ~pure! RD is to allow the particles to move
after they have been deposited. Two types of movement
possible. One is ‘‘horizontal’’ movement in which the heig
of the moving particle does not change, and the othe
vertical movement in which the height of the particle do
change. With regard to the latter there are two possible ty
One is upward vertical movement in which the height of t
particle increases and the other is downward vertical mo
ment in which the height of the moving particle decreases
order to complete the rules of growth with regard to t
‘‘allowed’’ moves we need to specify the conditions und
which horizontal or vertical movement is terminated. W
will refer to these collectively as ‘‘sticking rules.’’

In what follows we will show that what superficially ap
pear to be ‘‘trivial’’ or ‘‘obvious’’ rules of movement~often
designed for convenience of implementation on a compu!
can have extremely subtle implications for the resulti
mathematics~and, in particular, the associated different
.
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2700 PRE 59W. E. HAGSTON AND H. KETTERL
equations purporting to model the resulting surface str
ture!. Furthermore, we will show that the implications for th
mathematics~even for the same set of rules! can be different
dependent on the dimensionality of the surfaced8 under con-
sideration.

We examine ad851 surface, i.e., a two-dimensiona
structure (d52) having ay axis ~the height! and anx axis
~the coordinate defining the position along the surface!. A
possible set of rules is the following. Permit the particle to
displaced horizontally up to a maximum ofl lattice sites
provided always that there is another particle immediat
below it. If such a situation always prevails, then at the e
of the l moves leave the particle where it is. If, on the oth
hand, in the course of making these moves the particle
counters a gap, then allow it to move vertically down unti
reaches a position where there is again a particle imm
ately below it at which point the particle movement is term
nated. Similarly, if in the course of making up tol moves, it
meets another particle on the same level all movemen
terminated.

It is clear that surface relaxation processes involving s
SOS movements have the effect of changing the noise t
h in Eq. ~2! to a new valueh8. Thus this situation could be
described by the equation

]h

]t
5F1h8. ~3!

Such an equation, although correct, is of little use from
analytical viewpoint because we do not know the form of
noise termh8. However the essential characteristic of SO
movement that we can make use of is that it leaves the
erage height of the surface unchanged. In effect one la
site loses a particle and another lattice site~which could be
anywhere up to a distancel away horizontally! gains one.
This suggests that we write the noise termh8 in the form

h85h1
]G

]x
, ~4!

whereG is any ~well-behaved! function we care to choose
The reason being that the act of averaging over a finite~but
large! number of discrete particles is deemed as be
equivalent~in a continuum description! to the act of integrat-
ing and then dividing by the ‘‘length’’ of the region of inte
gration. Consequently, expressing the change in the nois
a divergence means~at least in the limit that the length of th
system becomes infinite! that the average ofh8 is zero~just
like h). This then gives the formal result

h̄5^h&5Ft,

which is known to be correct for SOS models.~One might
note that, strictly speaking, this result is not ‘‘exact’’ for
finite system since the divergence term integrates to a s
but finite entity. Such ‘‘errors’’ are an inherent feature of t
modeling of finite systems by continuum differential equ
tions.! Thus, for SOS models invoking ‘‘surface relaxation
we expect the generalization of the equation of motion
~2!, for ~pure! RD to be
-
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]h

]t
5F1

]G

]x
1h, ~5!

whereG is, at this stage, some unspecified function. A co
puter model ofd851 RD plus surface relaxation was eval
ated by Family@2# many years ago. According to this auth
the resulting surface was self-affine, i.e., was described
Eq. ~1! with the value of the parametersa, b, andz being
independent of the maximum number of lattice sitesl over
which a particle was allowed to move horizontally~a point
we will return to later!. Furthermore Family@2# found that
the scaling properties of the surface~or equivalently, the val-
ues ofa, b, andz! were consistent with the choice

G5n
]h

]x
~6!

with n constant.
The resulting equation,

]h

]t
5F1n

]2h

]x2
1h, ~7!

is well known in the literature and is referred to as the E
wards Wilkinson~EW! equation@3#. It is important to note
exactly how the mapping of the horizontal and vertical m
tion onto a differential operator occurs in Eq.~7!. The entity
n(]2h/]x2) ~with n positive! corresponds~as shown in Fig.
1! to a movement of particles from the top of a ‘‘hill’’ to the
bottom of it, i.e., a flattening of the hill. In other words it i
consistent with movements both horizontally and vertica
downwards. This manifests itself clearly in that model
Family @2# in which all possible downwards moves of a pa
ticle are allowed to occur, and the particle moves to
nearest-neighbor position only in the horizontal movem
~i.e., l 51). The form of the associated surface is shown
Fig. 2. Examination of the latter shows that the ‘‘vertica
separation of nearest-neighbor columns is also small for
situation. Hence the model leads self-consistently~as a result
of the rules of movement! to a situation where both sma
horizontal and downward vertical motion is the norm. Th
the situation were all possible downward motion is permit
to occur with 100% probability is replicated in the mat
ematics by the differential formn(]2h/]x2) ~Fig. 3!.

This having been established we now return to the cla
by Family @2# that the parametersa, b, andz are indepen-
dent of the magnitude ofl . To see that this cannot possib
be true let us take ad851 surface of lengthL and allow the
number of horizontal moves to be up to a maximum ofL.
For such a situation it is clear that we will obtain layer b
layer growth—the reason being the following. During th
first monolayer coverage ‘‘islands’’ will develop of sizeLi
say. With increasing coverage it becomes increasingly pr
able that the next particle added will be on one of the
islands. However, if the particle is allowedL horizontal
moves, it will migrate readily to the edge of the island,
over the side and then adhere to the rim of it, thus extend
the size of the island. There are several important result
be deduced from these considerations. First, if we hav
surface of total lengthL, then as long as we allow horizonta
moves up to some maximuml say, we may well find a serie
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PRE 59 2701GROWTH MODELS AND THE QUESTION OF . . .
of surfaces belonging to the same universality class. H
ever, this can only be true as long asl is less than some
fraction of the total ‘‘length’’ L of the surface. Oncel ex-
ceeds this fraction, an increasing number of islands will c
lesce and we will very quickly obtain layer by layer growt
In short, dependent on the size of the system, universa
classes will only be obtained if we permit a limited numb
of horizontal movements only. The precise number is ill d
fined at this stage, but typically in the literature this numb
is chosen to be 1 or 2 only.

B. Surface relaxation involving vertical
motion downwards only

We consider next vertical motion and, in particular,~pure!
ballistic deposition~BD!. In such a model one imagines th
particles being deposited vertically onto a substrate in a
dom sequence. The rule of movement is to move vertic
down until the particle meets another particle. The latter
be either directly underneath or at the side of the mov
particle. In either event movement is then terminated. As

FIG. 1. Differential operators acting on the functionh(x).
@1(]h/]x)#2 increases the particles at the side of the hill but do
not transport them to the top of it.1(]2h/]x2) removes particles
form the top of the hill and redistributes them to the sides a
bottom of it. 2(]4h/]x4) is similar to the previous case
1(]2/]x2)(]h/]x)2 moves particles from the base of the hill to th
top of it.
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well known, such a model does have overhangs and vacan-
cies present in it. Consider next~pure! BD plus surface re-
laxation. The specification of the latter is the following. If
there is another particle immediately beneath the one under
consideration then no movement occurs. On the other hand,
if there is no particle immediately beneath the one under
consideration move the latter down until it comes into con-
tact with either the substrate or another particle which lies
immediately below it. At this point motion ceases. In other
words we are looking at a model of BD plus surface relax-
ation where the latter is defined to be vertical movement
downwards. At this stage the extent of the movement down-
wards is ill defined. It is obvious that such a model of BD
plus vertical movement downward gives us exactly the same
end result as~pure! RD. Hence the equation of motion for
BD plus vertical movement downward~or pure RD! is Eq.
~2!. However, the interface width for such a situation in-
creases without limit and hence, after an infinite time, the
width is infinite. Correspondingly the vertical movements
downward must be infinite. What this shows us is that when
we define the rules of movement for BD plus vertical relax-
ation, we have no idea of the extent of the vertical move-
ment. However, the model, when evolved self-consistently
according to these same rules, shows us that the motion in

s

d

FIG. 2. Surface for RD plus relaxation after Family~taken from
Ref. @1#!.

FIG. 3. Growth rules of Family.
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the vertical direction is unlimited. Furthermore, althou
vertical movement is occurring, the equation of motion, i.
Eq. ~2!, does not contain any differential operators, the str
ture itself is free of vacancies and the surface is not s
affine.

1. Surface relaxation involving vertical motion upwards only

Let us consider next a variant on this model but this ti
involving upward motion. In essence, the previous mo
started from~pure! BD allowed vertical motion downward
and ended up with~pure! RD. We will now consider the
converse, i.e., we will start with~pure! RD allow vertical
motion upwards and end up with~pure! BD. Thus the rules
of motion are the following. Choose a random number a
add one particle to the corresponding lattice point. If t
added particle has no neighboring points occupied by p
ticles to a higher level, then leave it where it is. On the ot
hand, if the added particle finds higher columns next to
move it up the side of the highest such column until it
level with the top most point. Again at this stage we have
idea of the extent of the upward motion that will ultimate
be involved in such a model. It is well known of course th
~pure! BD, which is in essence the model we are describi
leads to a surface width which ultimately saturates. In t
this means that the upward motion is in fact finite and de
mined by the surface width. Furthermore, the associa
equation of motion for the surface is well known. Howev
we deliberately refrain from writing it down at this stage f
reasons that will be apparent later. Suffice it to say that
original starting point was~pure! RD for which the equation
of motion is Eq.~2!. We then included what turns out to b
finite upward motion. The latter can, apparently, be d
scribed by adding two differential operators to Eq.~2!. One
of these turns out to have the same form as that given in
~7!. However the other cannot be written as a diverge
term, i.e., it is a nonconservative term and is in fact rep
sented by a nonlinear operator.

Another interesting aspect of these two cases is the
lowing. At the outset it is not apparent in either model ju
what the extent of the vertical motion is. However, the mo
els themselves evolve in such a way that the downward
tical motion is unlimited in extent whereas the upward v
tical motion is limited. This shows that the rules
movement, which appear to be the ‘‘mirror image’’ of on
another, lead to models which evolve in such a way t
up-down symmetry in the growth direction is broken, i.
motion downwards can occur to a significantly greater ext
than motion upwards.

2. Surface relaxation involving limited vertical motion
downwards only

When considering horizontal movement, we argued t
the existence of universality classes, associated with sur
relaxation processes, was in fact a consequence of the lim
amount of horizontal movement that was permitted to occ
We will now examine the corresponding question of impo
ing a limited amount of vertical movement downwards. Th
we begin with a model which initially starts from~pure! BD
and then allows a limited number of vertical moves dow
ward ~i.e., a maximum of 100 lattice spacings say!. Initially,
when ‘‘growing’’ such a model on the computer, we will b
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dealing with essentially pure RD. This is because the in
face width in the early stages of growth will be much le
than 100 lattice spacings. Hence initially we will have a SO
pure RD growth mode in which there are no vacanc
present in the structure. For this stage of the growth
governing equation will be Eq.~2!. However, as we know,
the interface width grows without limit for~pure! RD and a
stage will eventually be reached at which the interface wi
approaches and then exceeds 100 lattice spacings. Onc
occurs a situation will develop where some of the downw
vertical motion will leave vacancies in the structure, i.
some of the downward motion will not be SOS. For such
situation we would expect from our earlier consideratio
that the form of the equation of motion would change an
by analogy with the previous case, we might anticipate n
linear terms to appear in it. The hybrid nature of the pres
case from the earlier viewpoint of describing~pure! BD start-
ing from ~pure! RD is that only some of the particles havin
higher columns next to them are eventually moved up, a
even then they are only moved part of the way up the c
umn.

The essential point here is the following. We started fro
a model with well defined rules of movement. In the ea
stages of growth, the resultant structure was defect free~i.e.,
no vacancies! and was described by a particular equatio
However, as a self-consistent result of the rules of mo
ment, the surface eventually evolves according to a differ
differential equation from the one describing the earl
stages of growth. During the second stage of growth defe
~i.e., vacancies! do occur in the structure and the resultin
equation would be anticipated to contain nonlinear terms
is important to stress that it isnot the case that the equatio
of motion is the same throughout all the growth, but with
cross-over from one regime of dominance to another regi
Rather different forms of equation are required to descr
the evolution of the different stages of growth. What is mo
if we increased the maximum number of allowed downwa
vertical moves from 100 to, say, 1000, the time during wh
the first growth stage was governed by pure RD would
crease correspondingly. This shows clearly that the ‘‘cro
over’’ time between the two regimes is governed by t
number of vertical moves that are permitted to occur. Giv
that ~pure! RD is not a self-affine surface, we can see that
general whether such a surface~i.e., self-affine! is ever seen
to evolve in a finite time computer model can be crucia
dependent on the nature and extent of the permitted mo
ments.

C. Heuristic rules

As a prelude to describing the proposed rules we cons
a simplified model that permits some insight into this qu
tion. Consider first pure random deposition in one dimens
and the question of the change in the interface width follo
ing the deposition of one monolayer. The expression for
final height^h& f reads

^h& f5
1

LS (
i

~hi111h i ! D 5^h& i11, ~8!

where^h& i is the initial average height andL the length of
the substrate.
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Similarly,

^h2& f5
1

LS (
i

~hi
212hi11!12h i~hi11!1h i

2D ,

i.e.,

^h2& f[^h2& i12^h& i111^h i
2&. ~9!

It follows from Eqs. ~8! and ~9! that the final interface
width wf is related to the initial interface widthwi by the
relation

wf
25^h2& f2^h& f

25wi
21^h i

2&. ~10!

If we now imagine a relaxation process occurring invo
ing the movement of particles downwards in which a fract
a of the columns lose a particle and a fractiona of them
gain one, a similar analysis leads readily to the result

wf
25wi

21^h i
2&12a12a@^hi&g2^hi&L#, ~11!

where^hi&g(^hi&L) is the average height of the columns th
gain ~lose! a particle. It follows from Eq.~11! that saturation
will occur if the following relation is obeyed:

^hi&L2^hi&g5
1

2a
^h i

2&11. ~12!

Since the noise term~i.e., ^h i
2&) is fixed it is clear that it will

be difficult, in general, to satisfy this equation on a layer
layer growth basis and that in general large fluctuations~or
oscillations! about the ‘‘equilibrium’’ width will occur in
computer simulations on finite size substrates. Another
portant feature that is apparent from examination of Eq.~12!
is the following. If, within a class of allowed moves, w
permit only a fractionb of any given move to occur, we
would replacea by the fractionab. This means that the
entity on the left hand side of Eq.~12! would increase pro-
gressively as we decreased the value ofb. In turn this im-
plies that the corresponding interface width would increa
Since allowed moves of a given class are presumed to
associated with a universality class of a particular type,
implies that the interface width of the latter can be increa
continuously simply by reducing the probability of mov
ment uniformly for all allowed moves in the class~clearly
the range of possible values ofb, although undefined at thi
stage, cannot be over the entire region 0<b<1 since, e.g.,
b50 gives the model involving no relaxation, i.e., exac
how smallb can be is not known at this stage!. Put alterna-
tively, this suggests that interface width alone is a poor in
cator of the universality class since the prefactor of the te
describing the time evolution of this width for such a cla
can be increased by simply varying the probability of occ
rence of all allowed moves in the class. It is revealing
pursue this argument further and to distinguish between
various types of move contained within a given class
moves. This can be done on the basis of the coordina
numberv i of the particle prior to movement. For example,
the case ofv i51 we could distinguish between the fractio
of particlesa1 having av i51 and sat on top of a column
from the fractiona2 having av i51 and sat next to a ste
t

-

e.
be
is
d

i-

-

e
f
n

edge. Yet again these are to be distinguished from the f
tion a3 of particles having av i52. For generality we will
assume that the fraction of particles area1 up to an . @In
terms of the previous notation (a5a11a21•••1an)]. The
generalization of Eq.~11! can be readily shown to be

wf
25wi

21^h i
2&12a12$a1@^hi&g2^hi&L%

1a2@^hi&2g2^hi&2L#1•••

1an@^hi&ng2^hi&nL#% ~13!

where, in an obvious notation̂hi&ng(^hi&nL) is the average
height of typen columns that gain~lose! a particle. Once
again the effect of reducing all thea i by thesamefactor b
will give the immediate generalization of the result describ
earlier. However, it is clear from the present equation that
functional form of the equation remains unchanged o
when all thea i are reduced in this way. As opposed to th
if the a i are all reduced by different factorsb i , then the
functional form of the equation is changed. For such a s
ation it is far from obvious whether the resultant class
moves belongs to the same universality class as forb51 ~or
for a uniform value ofb). In the extreme case thatb i50 for
some of the moves, but exists for others, we would clea
anticipate a different universality class. However, even
the latter situation, it is not clear whether increasing theb i
values that were previously identically zero to extreme
small values would change the universality class type,
the stability of the latter to small changes of movement ty
is not presently known.

D. Heuristic arguments for the differential operators
appearing in the stochastic differential equation

We form next a set of rules for which differential oper
tors are to be associated with which situation~see also Fig.
1!. In the latter, following conventional wisdom, we hav
considered four types of differential operators only name
(]h/]x)2, ]2h/]x2, (]2/]x2)(]h/]x)2, and ]4h/]x4. ~As
should be clear from Fig. 1 the effect of such operators o
‘‘symmetric hill’’ is symmetric—hence as long as the pr
scribed rules of deposition and surface relaxation possess
left—right symmetry one would expect such even order o
erators.!

Our suggested rules are the following.
For surfaces whose interface width saturates:
~i! For movement vertically downwards~further refine-

ment of these rules are presented later! ~1! employ the op-
erator1n(]2/]x2) if the rules of movement include all pos
sible downward motion, ~2! employ the operator
2k(]4/]x4) if the rules of movement exclude certainv i
52 particles.

~ii ! For movement vertically upwards~further refinement
of these rules are presented later! ~1! employ the operator
1g(]h/]x)2 if the rules of movement involve the creatio
of vacancies in the structure and correspond to maxi
movement~with 100% probability! of particles up the side o
columns but donot involve movement to the top of the ad
jacent column~i.e., non-SOS models!, ~2! employ the opera-
tor l(]2/]x2)(]h/]x)2 if the rules of movement do not in
volve the creation of vacancies in the structure a
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correspond to the movement of particles~with 100% prob-
ability! upward from the top of one column to the top of a
adjacent column~i.e., SOS models!. Note that upwards mo
tion can, on its own, destabilize a surface, and for SOS
laxation needs to be counterbalanced by an equivalent do
wards motion ‘‘current.’’

For surfaces whose interface width does not saturate t
are at least two distinct possibilities. Either the growth eq
tion does not contain differential operators~e.g., pure RD or,
as we will argue in a later paper, pure shading! or it contains
an instability.

It should be clear from our earlier discussions that ins
bilities can be induced in a given model by reversal of
motion in surface relaxation processes. Such time reve
has the effect of, e.g., replacingn by 2n in Eq. ~7!. Clearly
reversing the sign of the four differential operators we d
cussed earlier could therefore result in instabilities in
associated differential equation. Hence one has to exam
carefully the permitted movements in order to ensure t
such movements do not ultimately lead, via self-consisten
to terms in the associated differential equation, which ma
its solution unstable. An example of this is given later.

E. Comparison of the heuristic rules with computer models
reported in the literature

Most computer models reported in the literature per
the deposited particle one move in the horizontal directi
Which direction the particle moves vertically is also det
mined by the rules of movement. In certain cases both
ward and downward motion is permitted, whereas in ot
cases upward~or downward! motion only is permitted. For
many cases reported in the literature the rules governing
face relaxation~which are almost invariably of the SOS typ!
are not even stated in this simple form, rather, in an effor
mimic the physics, the rules are defined in terms of the
ordination numberv i of the particle to be moved. In particu
lar, whenv i>2 movement is not usually permitted unle
the coordination number increases—i.e., in those situat
where the coordination would be the same at the end of
movement as it was prior to movement~the so-called ‘‘tie’’
situation! no movement is permitted. On the other ha
where the coordination number increases via the movem
the rule could either be~a! move to the nearest-neighbor si
that increases the value ofv i or ~b! move to the nearest
neighbor site which gives the maximum value ofv i .

The subtlety of these rules is that, because of the topol
of the surface,~a! and ~b! define different types of allowed
moves in different dimensions. For example, Kotrla, Le
and Smilauer@4# have shown that both~a! and ~b! lead to
vertical motion downwards ind851. However, ind852
rule ~a! leads to predominantly downward motion where
rule ~b! leads to both downward and appreciable upward m
tion.

We will now consider various models from this view
point. For the well knownd851 case studied by Family@2#
the tie situation occurs frequently forv i52 and the rules of
movement permit the particle to move down only und
these circumstances. Correspondingly the resulting inter
is smooth—hence we are led to the conclusion that if
moves downward are permitted~including the tie situation!
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the resulting interface is smooth and the associated relax-
ation downward is described by the operatorn(]2h/]x2). As
opposed to this it is found that if, ind851, moves down-
wards for the tie situation whenv i52 are forbidden~Figs. 4
and 5! and downward motion only allowed if the coordina-
tion number is increased, we obtain a rough interface~Fig. 6
the properties of which are described by the operator
2k(]4h/]x4) @5,6#. The generalization of these same rules
to d852 presents an interesting situation in that for case~a!
discussed above, this leads to predominantly downward mo-
tion only and is hence described by the operator
2k(]4h/]x4) @5,6#. However, for case~b!, significant up-
ward motion is also allowed which is essentially SOS in
nature. The corresponding interface~which is rough! will be
described by an equation in which the downward motion is
represented by the operator2k(]4h/]x4) whereas the up-
ward motion is described byl (]2/]x2)(]h/]x)2. This is in
agreement with what is found in the computer modeling
@4,7#. Hence we here have a situation where the equation of
motion, because of the permitted rules of movement, is gov-
erned by the following equation:

]h

]t
5F2k

]4h

]x4
1h ~14!

in d851, but is described by the equation

]h

]t
5F2k

]4h

]x4
1l

]2

]x2S ]h

]xD 2

1h ~15!

in d852. We would argue, in contrast with statements in the
literature@4# that this is not an unusual situation in physical
terms but is merely a consequence of the fact that the per-
mitted movements ind851 andd852 are different. Equally

FIG. 5. Growth rules of Das Sarma and Tamborenea.

FIG. 4. Growth rules of Wolf.
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we would argue@1# that it is not true that the equation o
motion is the same ind851 andd852 but that the crossove
has not been seen ind851.

Consider next the model of Lai and Das Sarma@8#. These
authors considered a similar model ind851 to the one of
Wolf and Villain @5# and Das Sarma and Tamborenea@6#.
However, in the case of tie withv i52 the particle was
moved to the nearest neighbor site with the smaller he
difference ~i.e., sometimes upwards and sometimes do
ward motion occurred!. For the case of a tie withv i51 the
particle was allowed to diffuse to higher bonding within
distancel—i.e., for d851 downward motion could also oc
cur for this situation. Given that these rules are all SOS t
and that significant amounts of upward and downward m
tion is occurring, we would expect that the resulting equat
is the fourth-order nonlinear equation appearing in Eq.~15!.
This is precisely what Lai and Das Sarma@8# found.

In view of our earlier comments we would envisage
interesting situation developing if, in the case of tie withv i
52, the downward motion was forbidden and only the u
ward motion was allowed. For such a situation we co
anticipate an instability could develop in the system si
such upwards motion is not counterbalanced by an equ
lent downwards motion ‘‘current.’’ This is precisely wh
happens in the model of Park, Provata, and Redner@9# where
no saturation of the interface width was found for syste
larger than a critical size.

As a final example we consider model 1 ind852 of
Kotrla, Levi, and Smilauer@4#. This model is a straightfor
ward generalization of the Wolf and Villain@5# and Das
Sarma and Tamborenea@6# model in that if there is a neigh
boring site with a higher value ofv i the particle relaxes to i
in either the upward or the downward direction. In the c
of a tie the particle remains where it is. It should be obvio
from our previous discussion that once again we have S
relaxation in the upward and the downward direction a
that the fourth order nonlinear equation, i.e., Eq.~15! will
describe the evolution of the surface. This is exactly w
Kotrla, Levi, and Smilauer@4# found.

Given the success of our heuristic rules we could t
invert the problem of predicting the permitted movements

FIG. 6. Surface of the Wolf and Villain model~taken from Ref.
@1#!.
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be associated with a given stochastic differential equation.
Consider, for example, the equation

]h

]t
5F1n

]2h

]x2
1gS ]h

]xD 2

1h. ~16!

The termsF1h imply that the initial deposition is SOS
and is pure RD. The second term represents movements hori-
zontally and vertically downwards. Similarly the term
(]h/]x)2 implies relaxation vertically upwards with the par-
ticle being moved up the side of a column until it was~at
most! placed level with the top of it~i.e., non-SOS vertical
motion, which creates vacancies in the system!. In summary,
we would expect that Eq.~16! represented RD following by
surface relaxation in which the process involves both down-
ward and upward motion. It comes as somewhat of a surprise
therefore to find that Eq.~16! is apparently applicable ind8
51, to pure BD. If anything we might have expected that the
latter corresponds to~pure! RD followed by limited vertical
movement upwards along the side of higher~neighboring!
columns—i.e., one might have expected~pure! BD to have
obeyed the equation

]h

]t
5F1gS ]h

]xD 2

1h.

A possible resolution of this paradox would be~as indi-
cated by our previous reasoning! that ~pure! RD followed by
surface relaxation in both the downward and upward direc-
tion is mathematically indistinguishable from pure BD. This
problem will be addressed in future publications. For the
present we note that, in graphical terms, what we are sug-
gesting is that the situation depicted in Fig. 7~a! ~appropriate
to ‘‘pure’’ BD ! is ultimately physically indistinguishable
from that depicted in Fig. 7~b!, i.e., RD plus surface relax-
ation in the downward and upward direction. Alternatively
we could argue that we need both a downward and an up-
ward current of particles to obtain a stable interface.

III. CONCLUSION

In the present paper we have presented arguments to the
effect that observation of universality classes in computer
simulations of surface growth is a consequence of the limited
number of horizontal moves that a given particle is permitted
to make.~Conversely, if the particle was permitted to make
any number of moves up to a maximum value determined to
be equal to the substrate size, then interface roughness would
never develop in the sense that growth would be of the layer

FIG. 7. Different rules with the same result.
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by layer type.! Given the limited number of horizonta
moves, the universality class is then determined by the
ture and extent of the vertical motion. This ultimately is co
trolled by the rules associated with the coordination num
v i taken in conjunction with the dimensionalityd8 of the
surface. In particular, rules may be defined that in eff
allow, for example,

~a! downward motion only in bothd851 andd852 or
~b! downward motion ind851 but both downward and up
ward motion ind852.

If downward motion only is allowed and this is of th
SOS type~i.e., a particle has another particle beneath it at
beginning and end of the motion! then the degree of the
differential operator, i.e.,]2h/]x2 or ]4h/]x4 is determined
by the rules of motion associated with the tie situation.
motion downwards is allowed in the tie situation, then t
second order differential operator is appropriate since
corresponds to all moves downwards being permitted. On
other hand, if motion downwards is forbidden in the tie si
ation, then the fourth order differential operator is applica
since such an operator is appropriate for the situation wh
only a fraction of the moves that can occur are permitted
occur. Similarly, if both upward and downward motion
allowed in the tie situation the fourth-order equation is ag
applicable.

In the case of upward motion the form of the different
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operator will again be determined by the rules of moveme
If the upward motion is of the SOS type then it is describ
by the operator]2/]x2(]h/]x)2. However if it is non-SOS
type ~i.e., it leads to the creation of vacancies! it will be
described by the operator (]h/]x)2.

We have shown, in the body of the text, that these h
ristic rules are consistent with many standard results repo
in the literature. Furthermore we have presented argum
to show that the nature and extent of the permitted vert
motion can lead to situations where, for example, initially t
growth contains no vacancies and is described by a partic
differential equation. However, eventually vacancies will e
ter the structure~as a result of the rules of movement! and
subsequently for this situation, the growth is described b
different differential equation.

Further substantiation for the validity of these argume
will be presented in a series of subsequent papers where
will also address the question of the apparent anomaly of
equation of motion for pure BD, and the question of t
universality class when theb i is chosen to have differen
values for the different move typesi.
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